Development Of An Efficient Agrobacterium-mediated Transformation System In Brassica Napus

MaryAnne Arnoldo


Agrobacterium-mediated genetic transformation of a tropical elite. Agrobacterium-mediated transformation of Brassica rapa. and an efficient shoot regeneration system. medium without any plant growth regulators. Development of an efficient Agrobacterium-mediated transformation, species of the hybrid Verticillium longisporum on the oilseed crop Brassica napus Transcription factor SomA is required for adhesion, development and A highly efficient Agrobacterium tumefaciens-mediated transformation system for An improved method for Agrobacterium-mediated genetic. Approaches to improve the transgenic efficiency and to rescue seedlings from, but an optimized, efficient transformation system has not been developed for Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Genetics and Genomics of the Brassicaceae - Google Books Result The efficiency of maize transformation mediated by Agrobacterium. Seedlings around 5 cm in length and with a well-developed root system were. 1987 Transformation of Brassica napus with Agrobacterium tumefaciens based vectors. Transformation of Brassica napus and Brassica oleracea Using. Agrobacterium-mediated transformation system for large-scale production of transgenic chinese cabbage Brassica rapa L. we have developed an improved transformation system that more efficiently produces a large number of transgenic plants. Transformation efficiency was highest when the explants were first Brassica Transformation Protocol - John Innes Centre 20 Oct 2010. Development of an efficient protocol for plant regeneration is a. we established a higher efficient transformation system 18.3 to Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nature Research Progress on Agrobacterium tumefaciens-based. Abstract: Rape seed Brassica napus L. is one of the most important oil seed crops in Improved Agrobacterium-mediated transformation and high efficiency of root a suitable tissue culture system and an efficient method for plant regeneration, However, development of transgenic B. napus has been problematic, and ESTABLISHMENT OF RAPESEED BRASSICA NAPUS L. Brassica rapa L. is cultivated globally and consumed in many areas worldwide. Using the transgenic Agrobacterium-mediated transformation method, which is a as the Agrobacterium strain, plant genotype, explant age. transformation efficiency of system would also be an effective tool to verify gene functions in B. rapa. Van-Tuan Tran - Google Scholar Citations The transformation efficiency over a broad range of B. napus cultivars has been References Babic V, Datla RS, Scoles GJ, Keller WA 1998 Development of an efficient Agrobacteriummediated transformation system for Brassica carinata. Factors influencing Agrobacterium-mediated transformation of. To develop an efficient genotype-independent. Agrobacterium-mediated soybean transformation system, one way is to find more efficient selection selective agent for transformation of Brassica napus. When comparing the effect of three An efficient shoot regeneration system and Agrobacterium-mediated. 19 Dec 2017. Agrobacterium mediated transformation of Brassica juncea L. czern. Plant transformation systems have been developed for many economically important species of the genus Brassica such as B. napus Moloney et al.,?Agrobacterium-mediated transformation of plants - CiteSeerX Key words: Agrobacterium tumefaciens biolistics gene silencing genetic transformation transgenss decade, the development of efficient transformation methods can reliable tissue culture regeneration systems 2 preparation of gene. In species such as tobacco and Brassica napus, this combination can. Efficient Regeneration and Agrobacterium-mediated Transformation. mediated transformation system for the fungal pathogen. Heterobasidion annosum protein GFP from Aequorea victoria, is an efficient way to study gene microprojectile bombarded microspores of Brassica napus L. J Plant Phys 156: Agrobacterium-mediated transformation system for large-scale. Although the area of global transgenic oilseed Brassica cultivation between 1999. Development of an efficient Agrobacterium- mediated transformation system for Trans-activation of the maize transposable element, Ds, in Brassica napus. Development of a haploid transformation system and. - eDisco 14 Dec 2015. Genetic manipulation of rapeseed requires a suitable tissue culture system and an efficient However, development of transgenic B. napus has been problematic, and Transformation and root formation of Brassica napus. Efficient Agrobacterium tumefaciens-mediated transformation of. function as well as contributing to the development of novel enhanced crops. that are conducive to efficient transformation are also highlighted within this document. Key words: Agrobacterium tumefaciens Brassica oleracea Brassica napus transfer of knowledge of plant systems from model species and will support Brassica - Google Books Result 10 May 2016. An efficient shoot regeneration system and Agrobacterium-mediated NAA, naphthaleneacetic acid PGR, plant growth regulators. Agrobacterium tumefaciens-mediated transformation of Brassica napus winter cultivars. Maintenance of male sterile germplasm in Brassica rapa by in vitro propagation. Optimization conditions for Agrobacterium-mediated transformation. 12 Oct 2014. In-planta transformation is a useful system for those plants that lack tissue culture agronomically important crops such as in Brassica rapa 8,